المعادلات التفاضلية :-
هي معادلات تحوي مشتقات وتفاضلات لبعض الدوال الرياضية وتظهر فيها بشكل متغيرات المعادلة .
انواع المعادلات التفاضلية :-1. العادية و الجزئية :-يمكن تقسيم المعادلات التفاضلية إلى قسمين :
كل من المعادلات التفاضلية العادية والجزئية يمكن أن تصنف إلى خطية وغير خطية. وتكون المعادلة التفاضلية خطية بشرطين :
وتكون غير خطية فيما عدا ذلك.
كل معادلة تفاضلية خطية هي من الدرجة الأولى، بينما ليست كل المعادلات التفاضلية من الدرجة الأولى هي خطية، لأن الدرجة تتحدد حسب أس التفاضل الأعلى، ومن الممكن أن تكون التفاضلات الأقل مرفوعة لأسس غير الواحد دون أن يؤثر ذلك على الدرجة، وهذا يخل بشرط المعادلة الخطية.
انواع المعادلات التفاضلية :-1. العادية و الجزئية :-يمكن تقسيم المعادلات التفاضلية إلى قسمين :
- معادلات تفاضلية اعتيادية : تحتوي على توابع ذات متغير مستقل واحد ومشتقات هذا المتغير.
- معادلات تفاضلية جزئية : تحتوي دوال رياضية لأكثر من متغير مستقل مع مشتقاتها الجزئية .
كل من المعادلات التفاضلية العادية والجزئية يمكن أن تصنف إلى خطية وغير خطية. وتكون المعادلة التفاضلية خطية بشرطين :
- إذا كانت معاملات المتغير التابع والمشتقات فيها دوال في المتغير المستقل فقط أو ثوابت.
- إذا كان المتغير التابع والمشتقات غير مرفوعة لأسس، أي كلها من الدرجة الأولى.
وتكون غير خطية فيما عدا ذلك.
كل معادلة تفاضلية خطية هي من الدرجة الأولى، بينما ليست كل المعادلات التفاضلية من الدرجة الأولى هي خطية، لأن الدرجة تتحدد حسب أس التفاضل الأعلى، ومن الممكن أن تكون التفاضلات الأقل مرفوعة لأسس غير الواحد دون أن يؤثر ذلك على الدرجة، وهذا يخل بشرط المعادلة الخطية.
ليست هناك تعليقات:
إرسال تعليق