موقع Technology Library مكتبة التكنولوجيا هو اكبر اوقع لتحميل الكتب العلمية مجانا هو طريقنا نحو جيل من المبدعين

أبحث في مكتبة التكنولوجيا

السبت، 29 فبراير 2020

Physical Chemistry كتاب الكيمياء الفيزيائية



كتاب الكيمياء الفيزيائية
Physical Chemistry

David W. Ball (Cleveland State University)  

1 Gases and the Zeroth Law of Thermodynamics 1
1.1 Synopsis 1
1.2 System, Surroundings, and State 2
1.3 The Zeroth Law of Thermodynamics 3
1.4 Equations of State 5
1.5 Partial Derivatives and Gas Laws 8
1.6 Nonideal Gases 10
1.7 More on Derivatives 18
1.8 A Few Partial Derivatives Defined 20
1.9 Summary 21
Exercises 22
2 The First Law of Thermodynamics 24
2.1 Synopsis 24
2.2 Work and Heat 24
2.3 Internal Energy and the First Law of Thermodynamics 32
2.4 State Functions 33
2.5 Enthalpy 36
2.6 Changes in State Functions 38
2.7 Joule-Thomson Coefficients 42
2.8 More on Heat Capacities 46
2.9 Phase Changes 50
2.10 Chemical Changes 53
2.11 Changing Temperatures 58
2.12 Biochemical Reactions 60
2.13 Summary 62
Exercises 63
3 The Second and Third Laws of Thermodynamics 66
3.1 Synopsis 66
3.2 Limits of the First Law 66
3.3 The Carnot Cycle and Efficiency 68
3.4 Entropy and the Second Law of Thermodynamics 72
3.5 More on Entropy 75
3.6 Order and the Third Law of Thermodynamics 79
3.7 Entropies of Chemical Reactions 81
3.8 Summary 85
Exercises 86
4 Free Energy and Chemical Potential 89
4.1 Synopsis 89
4.2 Spontaneity Conditions 89
4.3 The Gibbs Free Energy and the Helmholtz Energy 92
4.4 Natural Variable Equations and Partial Derivatives 96
4.5 The Maxwell Relationships 99
4.6 Using Maxwell Relationships 103
4.7 Focusing on G 105
4.8 The Chemical Potential and Other Partial Molar
Quantities 108
4.9 Fugacity 110
4.10 Summary 114
Exercises 115
5 Introduction to Chemical Equilibrium 118
5.1 Synopsis 118
5.2 Equilibrium 119
5.3 Chemical Equilibrium 121
5.4 Solutions and Condensed Phases 129
5.5 Changes in Equilibrium Constants 132
5.6 Amino Acid Equilibria 135
5.7 Summary 136
Exercises 138
6 Equilibria in Single-Component Systems 141
6.1 Synopsis 141
6.2 A Single-Component System 145
6.3 Phase Transitions 145
6.4 The Clapeyron Equation 148
6.5 The Clausius-Clapeyron Equation 152
6.6 Phase Diagrams and the Phase Rule 154
6.7 Natural Variables and Chemical Potential 159
6.8 Summary 162
Exercises 163
7 Equilibria in Multiple-Component Systems 166
7.1 Synopsis 166
7.2 The Gibbs Phase Rule 167
7.3 Two Components: Liquid/Liquid Systems 169
7.4 Nonideal Two-Component Liquid Solutions 179
7.5 Liquid/Gas Systems and Henry’s Law 183
7.6 Liquid/Solid Solutions 185
7.7 Solid/Solid Solutions 188
7.8 Colligative Properties 193
7.9 Summary 201
Exercises 203
8 Electrochemistry and Ionic Solutions 206
8.1 Synopsis 206
8.2 Charges 207
8.3 Energy and Work 210
8.4 Standard Potentials 215
8.5 Nonstandard Potentials and Equilibrium Constants 218
8.6 Ions in Solution 225
8.7 Debye-Hückel Theory of Ionic Solutions 230
8.8 Ionic Transport and Conductance 234
8.9 Summary 237
Exercises 238
9 Pre-Quantum Mechanics 241
9.1 Synopsis 241
9.2 Laws of Motion 242
9.3 Unexplainable Phenomena 248
9.4 Atomic Spectra 248
9.5 Atomic Structure 251
9.6 The Photoelectric Effect 253
9.7 The Nature of Light 253
9.8 Quantum Theory 257
9.9 Bohr’s Theory of the Hydrogen Atom 262
9.10 The de Broglie Equation 267
9.11 Summary: The End of Classical Mechannics 269
Exercises 271
10 Introduction to Quantum Mechanics 273
10.1 Synopsis 273
10.2 The Wavefunction 274
10.3 Observables and Operators 276
10.4 The Uncertainty Principle 279
10.5 The Born Interpretation of the Wavefunction;
Probabilities 281
10.6 Normalization 283
10.7 The Schrödinger Equation 285
10.8 An Analytic Solution: The Particle-in-a-Box 288
10.9 Average Values and Other Properties 293
10.10 Tunneling 296
10.11 The Three-Dimensional Particle-in-a-Box 299
10.12 Degeneracy 303
10.13 Orthogonality 306
10.14 The Time-Dependent Schrödinger Equation 308
10.15 Summary 309
Exercises 311
11 Quantum Mechanics: Model Systems and the
Hydrogen Atom 315
11.1 Synopsis 315
11.2 The Classical Harmonic Oscillator 316
11.3 The Quantum-Mechanical Harmonic Oscillator 318
11.4 The Harmonic Oscillator Wavefunctions 324
11.5 The Reduced Mass 330
11.6 Two-Dimensional Rotations 333
11.7 Three-Dimensional Rotations 341
11.8 Other Observables in Rotating Systems 347
11.9 The Hydrogen Atom: A Central Force Problem 352
11.10 The Hydrogen Atom: The Quantum-Mechanical Solution 353
11.11 The Hydrogen Atom Wavefunctions 358
11.12 Summary 365
Exercises 367
12 Atoms and Molecules 370
12.1 Synopsis 370
12.2 Spin 371
12.3 The Helium Atom 374
12.4 Spin Orbitals and the Pauli Principle 377
12.5 Other Atoms and the Aufbau Principle 382
12.6 Perturbation Theory 386
12.7 Variation Theory 394
12.8 Linear Variation Theory 398
12.9 Comparison of Variation and Perturbation Theories 402
12.10 Simple Molecules and the Born-Oppenheimer
Approximation 403
12.11 Introduction to LCAO-MO Theory 405
12.12 Properties of Molecular Orbitals 409
12.13 Molecular Orbitals of Other Diatomic Molecules 410
12.14 Summary 413
Exercises 416
10.6 Normalization 283
10.7 The Schrödinger Equation 285
10.8 An Analytic Solution: The Particle-in-a-Box 288
10.9 Average Values and Other Properties 293
10.10 Tunneling 296
10.11 The Three-Dimensional Particle-in-a-Box 299
10.12 Degeneracy 303
10.13 Orthogonality 306
10.14 The Time-Dependent Schrödinger Equation 308
10.15 Summary 309
Exercises 311
11 Quantum Mechanics: Model Systems and the
Hydrogen Atom 315
11.1 Synopsis 315
11.2 The Classical Harmonic Oscillator 316
11.3 The Quantum-Mechanical Harmonic Oscillator 318
11.4 The Harmonic Oscillator Wavefunctions 324
11.5 The Reduced Mass 330
11.6 Two-Dimensional Rotations 333
11.7 Three-Dimensional Rotations 341
11.8 Other Observables in Rotating Systems 347
11.9 The Hydrogen Atom: A Central Force Problem 352
11.10 The Hydrogen Atom: The Quantum-Mechanical Solution 353
11.11 The Hydrogen Atom Wavefunctions 358
11.12 Summary 365
Exercises 367
12 Atoms and Molecules 370
12.1 Synopsis 370
12.2 Spin 371
12.3 The Helium Atom 374
12.4 Spin Orbitals and the Pauli Principle 377
12.5 Other Atoms and the Aufbau Principle 382
12.6 Perturbation Theory 386
12.7 Variation Theory 394
12.8 Linear Variation Theory 398
12.9 Comparison of Variation and Perturbation Theories 402
12.10 Simple Molecules and the Born-Oppenheimer
Approximation 403
12.11 Introduction to LCAO-MO Theory 405
12.12 Properties of Molecular Orbitals 409
12.13 Molecular Orbitals of Other Diatomic Molecules 410
12.14 Summary 413
Exercises 416
13 Introduction to Symmetry in Quantum Mechanics 419
13.1 Synopsis 419
13.2 Symmetry Operations and Point Groups 419
13.3 The Mathematical Basis of Groups 423
13.4 Molecules and Symmetry 427
13.5 Character Tables 430
13.6 Wavefunctions and Symmetry 437
13.7 The Great Orthogonality Theorem 438
13.8 Using Symmetry in Integrals 441
13.9 Symmetry-Adapted Linear Combinations 443
13.10 Valence Bond Theory 446
13.11 Hybrid Orbitals 450
13.12 Summary 456
Exercises 457
14 Rotational and Vibrational Spectroscopy 461
14.1 Synopsis 461
14.2 Selection Rules 462
14.3 The Electromagnetic Spectrum 463
14.4 Rotations in Molecules 466
14.5 Selection Rules for Rotational Spectroscopy 471
14.6 Rotational Spectroscopy 473
14.7 Centrifugal Distortions 479
14.8 Vibrations in Molecules 481
14.9 The Normal Modes of Vibration 483
14.10 Quantum-Mechanical Treatment of Vibrations 484
14.11 Selection Rules for Vibrational Spectroscopy 487
14.12 Vibrational Spectroscopy of Diatomic and Linear
Molecules 491
14.13 Symmetry Considerations for Vibrations 496
14.14 Vibrational Spectroscopy of Nonlinear Molecules 498
14.15 Nonallowed and Nonfundamental Vibrational Transitions 503
14.16 Fingerprint Regions 504
14.17 Rotational-Vibrational Spectroscopy 506
14.18 Raman Spectroscopy 511
14.19 Summary 514
Exercises 515
15 Introduction to Electronic Spectroscopy and Structure 519
15.1 Synopsis 519
15.2 Selection Rules 520
15.3 The Hydrogen Atom 520
15.4 Angular Momenta: Orbital and Spin 522
15.5 Multiple Electrons: Term Symbols and Russell-Saunders
Coupling 526
15.6 Electronic Spectra of Diatomic Molecules 534
15.7 Vibrational Structure and the Franck-Condon Principle 539
15.8 Electronic Spectra of Polyatomic Molecules 541
15.9 Electronic Spectra of Electron Systems:
Hückel Approximations 543
15.10 Benzene and Aromaticity 546
15.11 Fluorescence and Phosphorescence 548
15.12 Lasers 550
15.13 Summary 556
Exercises 558
16 Introduction to Magnetic Spectroscopy 560
16.1 Synopsis 560
16.2 Magnetic Fields, Magnetic Dipoles, and Electric Charges 561
16.3 Zeeman Spectroscopy 564
16.4 Electron Spin Resonance 567
16.5 Nuclear Magnetic Resonance 571
16.6 Summary 582
Exercises 584
17 Statistical Thermodynamics: Introduction 586
17.1 Synopsis 586
17.2 Some Statistics Necessities 587
17.3 The Ensemble 590
17.4 The Most Probable Distribution: Maxwell-Boltzmann
Distribution 593
17.5 Thermodynamic Properties from Statistical Thermodynamics 600
17.6 The Partition Function: Monatomic Gases 604
17.7 State Functions in Terms of Partition Functions 608
17.8 Summary 613
Exercises 614
18 More Statistical Thermodynamics 616
18.1 Synopsis 617
18.2 Separating q: Nuclear and Electronic Partition Functions 617
18.3 Molecules: Electronic Partition Functions 621
18.4 Molecules: Vibrations 623
18.5 Diatomic Molecules: Rotations 628
18.6 Polyatomic Molecules: Rotations 634
18.7 The Partition Function of a System 636
18.8 Thermodynamic Properties of Molecules from Q 637
18.9 Equilibria 640
18.10 Crystals 644
18.11 Summary 648
Exercises 649
15.6 Electronic Spectra of Diatomic Molecules 534
15.7 Vibrational Structure and the Franck-Condon Principle 539
15.8 Electronic Spectra of Polyatomic Molecules 541
15.9 Electronic Spectra of Electron Systems:
Hückel Approximations 543
15.10 Benzene and Aromaticity 546
15.11 Fluorescence and Phosphorescence 548
15.12 Lasers 550
15.13 Summary 556
Exercises 558
16 Introduction to Magnetic Spectroscopy 560
16.1 Synopsis 560
16.2 Magnetic Fields, Magnetic Dipoles, and Electric Charges 561
16.3 Zeeman Spectroscopy 564
16.4 Electron Spin Resonance 567
16.5 Nuclear Magnetic Resonance 571
16.6 Summary 582
Exercises 584
17 Statistical Thermodynamics: Introduction 586
17.1 Synopsis 586
17.2 Some Statistics Necessities 587
17.3 The Ensemble 590
17.4 The Most Probable Distribution: Maxwell-Boltzmann
Distribution 593
17.5 Thermodynamic Properties from Statistical Thermodynamics 600
17.6 The Partition Function: Monatomic Gases 604
17.7 State Functions in Terms of Partition Functions 608
17.8 Summary 613
Exercises 614
18 More Statistical Thermodynamics 616
18.1 Synopsis 617
18.2 Separating q: Nuclear and Electronic Partition Functions 617
18.3 Molecules: Electronic Partition Functions 621
18.4 Molecules: Vibrations 623
18.5 Diatomic Molecules: Rotations 628
18.6 Polyatomic Molecules: Rotations 634
18.7 The Partition Function of a System 636
18.8 Thermodynamic Properties of Molecules from Q 637
18.9 Equilibria 640
18.10 Crystals 644
18.11 Summary 648
Exercises 649
22.7 Summary 788
Exercises 790
Appendixes 792
1 Useful Integrals 792
2 Thermodynamic Properties of Various Substances 794
3 Character Tables 797
4 Infrared Correlation Tables 802
5 Nuclear Properties 805
Answers to Selected Exercises 806
Photo Credits 817
Index 819

 لتحميل الكتاب
↓↓↓


رابط بديل لتحميل الكتاب
↓↓↓


هناك تعليق واحد:

  1. Such great and nice information about software. This site gonna help me a lot in finding and using much software. Kindly make this like of content and update us. Thanks for sharing us microsoft office 365 crack kickass . Kindly click on here and visit our website and read more

    ردحذف